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Abstract

The problem of kaleidoscopically tiling a surface by congruent triangles
is equivalent to finding groups generated in certain ways. In order to
admit a tiling, a group must have a specific set of generators as well
as an involutary automorphism, θ, that acts to reverse the orientation
of the tiles. The purpose of this paper is to explore group theoretic and
computational methods for determining the existence of symmetry groups
and tiling groups, as well as to classify the symmetry and tiling groups on
hyperbolic Riemann surfaces of genus 6 and 7.
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1 Introduction

A surface is a topological space in which every point is contained in a neighbor-
hood topologically equivalent to a plane. The genus of an compact, orientable
surface is the number of “holes” in the surface. We will denote the genus by
σ. A sphere has genus zero, a torus has genus one, and a surface consisting of
n connected tori has genus n. See Figures 1 and 2 for pictures of a sphere and
torus.

In these figures we have examples of tilings, i.e., non-overlapping coverings of
the surface by polygons. The purpose of this paper is to classify kaleidoscopic,
geodesic tilings (definition to follow) of surfaces of genus six and seven with con-
gruent, hyperbolic triangles. We will assume that our surfaces have a metric of
constant curvature, and that, with respect to this metric, the edges are geodesic
segments, i.e., the shortest path between the endpoints. A closed geodesic will
then be some closed loop consisting of smoothly connected geodesic segments.
On a sphere, for example, the geodesics are great circles.

Definition 1 A tiling is kaleidoscopic if each edge of the tiling is part of a
geodesic on the surface such that there is a mirror reflection of the surface
across the geodesic. The set of fixed points of the reflection is called the mirror
of the reflection.

The mirror of a reflection across an edge is a union of disjoint circles one
of which contains the given edge. Furthermore, the triangles in the tiling are
all mirror images of each other along an edge, and all the angles meeting at a
vertex have the same measure.

Definition 2 A tiling is geodesic if for each edge of the tiling, the mirror of
the reflection is a union of edges of the tiling.

The geodesic condition ensures that at any vertex, there is an even number of
triangles. Otherwise, some geodesic would end at the vertex. These properties
can be seen in the icosahedral tiling of the sphere shown in Figure 1.

Most triangular tilings on surfaces of genera less than six have already been
classified. Broughton [2] classified all rotation groups in genus two and three,
and Vinroot [7] classified most tilings by triangles on surfaces of genus four and
five. Our main results are the tables in Section 9 where the tilings are classified
by the tiling group. We have determined many, though not all, tiling groups
for genus six and seven and found missing cases in [2] and [7]. We develop
the material presenting these tables in the following sections. In Section 2
we introduce the notion of tiling groups and review the scheme for classifying
tilings by tiling groups. A part of the classification problem requires finding an
automorphism, θ, of a particular type of the automorphism group of a surface.
Methods for finding θ are developed in Section 3. In the remaining sections an
approach to the classification is described, along with necessary group theoretic
material and some sample calculations. Some suggestions for further research
are given in Section 8.
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Figure 1. Icosahedral tiling - top view

Figure 1. Icosahedral tiling - top view
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2 Rotation and tiling groups

In order to better understand the structure of a tiling, it is helpful to consider
tilings from a group theoretic perspective. From the definition of kaleidoscopic
tiling, the group G∗ generated by reflections in the sides of tiles is a (tiling
preserving) group of isometries of the surface, called the tiling group. We can
view the tiling as arising from the group action of G∗ in which one distinguished
tile, called the master tile, is reflected across bounding geodesics to create the
entire surface. Thus, the master tile can be carried to every other tile on the
surface via the action of G∗, through repeated reflection. This is illustrated in
the icosahedral tiling of the sphere shown in Figure 1. Now consider rotations
about the vertices in the tiling. Through iterated rotations of the surface around
the vertices of tiles, any triangle can by carried to any other triangle of the same
orientation. These rotations comprise a subgroup of isometries G of the surface
called the orientation-preserving tiling group (OP tiling group) or more simply a
rotation group since it is generated by rotations. If we include a single reflection
along with the rotations, allowing tiles with reversed orientation, we generate
the entire tiling group.

We would like find specific generators of G∗ and G. Let us consider the
master tile, 4RPQ, as shown in Figure 3. Note that the triangle has curved
edges to suggest it is hyperbolic. Let p, q, and r be reflections across their
respective edges, and define a = pq, b = qr, and c = rp. Reflecting across two
different lines is equivalent to rotating about the point of intersection of the
lines of reflection. More specifically, it is a rotation by twice the angle of the
intersection. Therefore, a, b, and c are simply rotations about the vertices of
4RPQ by twice the angles of the triangles. If we define the angle measures of
our triangle to be π

l , π
m , and π

n , then a, b, and c are counterclockwise rotations
about R, P , and Q through angles of 2π

l , 2π
m , and 2π

n respectively. If we repeat
the rotation a of our master tile l times, we will have rotated by 2π. Thus, we
will be back at our master tile. Using similar arguments with b and c, it follows
that

al = bm = cn = 1. (2.1)

Also, since reflections have order two,

abc = pqqrrp = 1. (2.2)

It is not to difficult to show that G∗ is generated by reflections in the sides
of the master tile, so that G∗ = 〈p, q, r〉. The rotation group G, consists of the
orientation-preserving elements of G∗. Therefore, each element is a product of
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an even number of reflections and hence a word in a, b, and c. It follows that
G = 〈a, b, c〉 and G is a subgroup of index two, and is therefore normal in G∗.
Since abc = 1, it immediately follows that G = 〈a, b〉.
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b 

π 
n 

Figure 3. The master tile and generators for G and G∗

Remark 3 It is possible to construct a group G = 〈a, b, c〉from rotations satis-
fying 2.1 and 2.2 with out necessarily coming from a triangular tiling. To allow
for this possibility we will call G a rotation group of the surface if we do not
want to assume that G is an OP -tiling group.

When searching for tiling groups, it is often easier to find the rotation
group G rather than directly looking for G∗. The following equation called
the Riemann-Hurwitz equation,

2σ − 2
|G| = 1−

(
1
l

+
1
m

+
1
n

)
, (2.3)

as well as the relations in equations 2.1 and 2.2 aid in searching for rotation
groups. The Riemann-Hurwitz equation, which can be proven using the Euler
characteristic, relates the order of the rotation group, the genus, and the angles
of the triangle (or orders of rotations). With this equation, we can create a list
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of all possible group orders and (l, m, n)-triples for a given genus. We call this
list the branching data.

Using the Riemann-Hurwitz formula, we can see that if σ ≥ 2, then the sum
of the interior angles of the master tile must be less than π. Thus, we see that
the underlying geometry must be hyperbolic. Since our geometry is hyperbolic,
any two triangles with the same angle measures are congruent. We will call a
triangle with angle measures π

l , π
m , and π

n a (l, m, n)-triangle. If there is a triple
(a, b, c) of elements from G which satisfy equations 2.1, 2.2, and 2.3, then this
triple is called a generating (l, m, n)-triple.

Given a rotation group G, we wish to know if G is a subgroup of some tiling
group on the surface or if it is just a group action on the surface that does not
admit a tiling. We will see that the existence of the tiling group is intimately
entwined with the existence of an automorphism of the orientation-preserving
rotation group on the surface, arising from the reflections in the edges of tiles.
We discuss this automorphism θ in the next section.

3 The elusive theta

Given a tiling group G∗ = 〈p, q, r〉, we can define an automorphism θ of the
corresponding rotation group G by conjugation by q

θ(a) = q−1aq = qaq = qpqq = qp = a−1, (3.4)

θ(b) = q−1bq = qbq = qqrq = rq = b−1.

Suppose we know that a rotation group G exists for a surface. How can we
determine if a tiling group exists as well? The answer to this intriguing question
lies with the automorphism θ. The existence of a θ implies the existence of a
reflection q by the following theorem.

Theorem 4 Let G have a generating (l, m, n)-triple and suppose that the quan-
tity σ defined by 2.3 is an integer. Then there is always a surface of genus σ
with an orientation preserving G-action. If, in addition, there is an involu-
tary automorphism θ, i.e. θ2 = id, of G satisfying 3.4, then the surface has a
tiling by (l, m, n)-triangles such that the orientation preserving tiling group as
constructed above is the original G, and G∗ ∼= 〈θ〉nG.

Two Methods for Finding Theta One method for finding θ is shown in
Ryan Vinroot’s technical report [7]. This method involves embedding G in S|G|
by finding the left regular representation of G using Cayley’s Theorem [4]. Once
this has been accomplished, we can use Magma to compute the normalizer of
G in S|G|. Any automorphism of G is equivalent to conjugation of G by some
element in its normalizer. Therefore, we can search through the normalizer of G
to find θ. If no θ satisfying equation 3.4 is found in the normalizer, then no tiling
group exists. Unfortunately, as |G| increases, S|G| increases factorially, making
it extremely time-consuming to find the normalizer. For groups of order under

6



50, this method works well; however, for larger groups, this method becomes
inefficient. In order to find θ for larger groups in a reasonable amount of time,
a faster method is needed.

The second method uses a more direct construction for finding θ. We know
from 3.4 that

θ(a) = a−1 (3.5)

θ(b) = b−1.

Also, we know that a and b generate G. Accordingly, we can iteratively generate
all elements g in G as a combination of a’s and b’s as follows. We start with
a set containing 1, a and b. Then we multiply each element of the set on the
left by a and b separately, adding the new elements to the set. For example
the second set would be {1, a, b, a2, ab, ba, b2}. We repeat this process until we
have created the entire group. To attempt to create θ we use a similar process
to create all ordered pairs (g, θ(g)), where g varies in G. This time start with
the set {(1, 1), (a, a−1), (b, b−1)} = {(1, θ(1), (a, θ(a)), (b, θ(b))}. Then at each
iteration we select a pair (g, g′) from the set and add (ag, a−1g′) and (bg, b−1g′).
If θ exists then g′ = θ(g) and so θ(ag) = θ(a)θ(g) = a−1g′. Thus we are certainly
adding the right elements. We quit when we have |G| pairs. Next, we check
that this collection of ordered pairs defines a bijection from G to G by checking
that the set of all the first elements in the ordered pairs equals G and the set
of all the second elements equals G.

In order to show this bijection is an automorphism, we need to show that
it satisfies the homomorphism condition. The simplest way to check this con-
dition is to directly multiply each pair of elements in the group. With, |G|2
calculations, we can verify that θ(ab) = θ(a)θ(b) for all a and b in G. Another
way to show that the bijection is an automorphism is to construct θ in S|G|.
To construct θ, we need the ordering of the group G used in creating the left
regular representation of G in S|G|. Let #g be the index of g in G. We then
construct the permutation element where #g is sent to #θ(g) for all g in G. If
this permutation normalizes G in S|G|, then conjugation by this permutation
element is our automorphism θ of G. The precise statement we need is the
following.

Proposition 5 Let G be a group and let θ : G → G be a bijection satisfying
θ(1) = 1. For g ∈ G let Lg : G → G be the left multiplication operator Lg(x) =
gx. Then θ is an automorphism of G if and only if θ normalizes the subgroup
{Lg : g ∈ G} of S|G|, the group of invertible mappings of G. In the more specific
case that G = 〈a, b〉 and 3.5 holds then θ will be an automorphism if and only if

θLaθ−1 = La−1 ,

θLbθ
−1 = Lb−1 .

Proof. If θ ∈ Aut(G), then for each g, h ∈ G

θLgθ
−1(h) = θ(gθ−1(h)) = θ(g)h = Lθ(g)h.
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Thus θLgθ
−1 = Lθ(g), proving the necessity of the conclusion. Now lets prove

sufficiency. The hypothesis shows that θ ∈ S|G| normalizes the subgroup GL =
{Lg : g ∈ G} . Thus Adθ : Lg → θLgθ

−1 is an automorphism of GL onto its
image, which is also GL. It follows that there is a bijective map ψ : G → G
satisfying

θLgθ
−1 = Lψ(g), or alternatively

θ(gx) = ψ(g)θ(x) for all g and x.

However, L : G → GL is an isomorphism, and by definition ψ = L−1 ◦Adθ ◦ L.
Thus we have proven that ψ is a automorphism of G. We finish by noting that
θ(g) = θ(g · 1) = ψ(g)θ(1) = ψ(g), by hypothesis and previous calculation .

Example 6 Consider the group S3, of order 6, with θ as defined below.

#g g θ(g) #θ(g)
1 id id 1
2 a a−1 = a2 4
3 b b−1 = b 3
4 a2 a−2 = a 2
5 ab a−1b−1 = a2b 6
6 a2b a−2b−1 = ab 5

Thus, θ(g) is conjugation of g by the following element
[

1 2 3 4 5 6
1 4 3 2 6 5

]
= (2, 4)(5, 6).

Using this method, we can also create the automorphism group of G. Instead
of mapping a to a−1 and b to b−1, we can look at all automorphisms of G. Any
automorphism must map (a, b, c) to another generating triple. Recall that a
generating triple must satisfy equations 2.1 and 2.2. Once we decide where a and
b map, we can use the above method to directly construct the automorphism.
Thus, assuming we have a generating triple (a, b, c), we can construct every
automorphism and create the entire automorphism group. This method can
be generalized to any group with a finite number of generators; however, as
the number of generators increases, the complexity and the computation time
required increase significantly.

4 Finding tiling groups for genus 6 and 7

Building from the work of Broughton and Vinroot, we decided to classify rota-
tion and tiling groups for surfaces of genus 6 and 7. Classifying these groups
can be broken into two different parts. First, groups of low order are fairly
well known, and it is, thus, possible to find databases of all such groups. For
groups of larger order, additional group theoretic methods are needed to search
for tilings.
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Groups of Order Less Than 128 Magma [6] has a database of solvable,
non-Abelian groups of orders less than or equal to one hundred. Furthermore,
all solvable groups of order under 128, including the Abelian groups, can be
found in polycyclic notation on the Internet [1]. We wrote a program that
takes branching data from the Riemann-Hurwitz equation and determines all
rotation groups and tiling groups. First it searches for a group of the given order
that contains possible (a, b, c) triples for the given (l,m, n). Such a group is a
rotation group. Then, the program proceeds to check for the existence of a θ,
with the required properties, in the automorphism group of the rotation group.
As mentioned in Section 2, if a theta exists, then a tiling group exists, and
methods for finding θ were discussed in Section 3. The listing of all groups of
order under 128 makes it easy to find all rotation groups of order less than 128.
The tables in Section 9 show the triangular tiling groups for surfaces of genus
three through seven. For genus six and seven, all of the orientation preserving
rotation groups of order less than 128 were found using the method described
above.

Groups of Order More Than 127 There are a variety of ways of analyzing
groups of order greater than 127. In the next section we discuss the group
theoretic background for these. There are very few non-solvable rotation groups
G on surfaces of low genus. In fact the order of G must be ≤ 84(σ−1). Thus for
our search we may assume a maximal order of 84× (7− 1) = 504. The possible
simple factors for G are A5, A6, PSL2(7), and PSL2(8) of orders 60, 360, 168
and 504 respectively. The possible orders for non-solvable G are 60, 120, 180,
240, 300, 360, 420, 480, 168, 336, and 504. Moreover some of these possibilities
can be excluded on the basis of the branching data. Thus we exploit the fact
that in a solvable group there is a normal subgroup N C G and try to construct
G from our knowledge of the action of N on S and G/N on S/N. We are
particularly fortunate in the cases where N ↪→ G ³ G/N splits and that a
semi-direct product may be constructed. With the aid of Magma, these semi-
direct products can be created. Then, we can use the same steps as in the case
of groups of order ≤ 127.

5 Group construction and representation

In this section we consider group representation and group constructions that
are particularly applicable to solvable groups.

Polycyclic Notation In the previous subsection, we discussed how to use
Magma to determine whether a group is a rotation group. To perform this
calculation, we must first have the group represented in Magma. Polycyclic no-
tation is one form of group representation that Magma can deal with efficiently.

Polycyclic notation is a convenient way to represent any finite solvable group.
The representation for a group G in polycyclic form is a list of generators,
a1, a2, a3, . . . , an, along with some defining relations. Each of the generators,
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ai, when raised to a certain prime pi must equal either the identity or a word in
the generators aj where j > i. We also impose the condition that the subgroup
generated by ai+1, . . . , an is normal in the subgroup generated by ai, . . . , an. Not
only can any element of the group be written in terms of these n generators, but
the conditions imply that any element of the group can be written as a word
with the generators in the proper order. I.e., there is a unique normal form for
g ∈ G of the form

g = ar1
1 ar2

2 ar3
3 . . . arn

n ,

for some 0 ≤ r1 < pi, . . . , 0 ≤ rn < pn. It follows that |G| = p1p2p3 · · · pn.
The defining relations tell us how to represent an arbitrary element of G

in the proper form described above, in particular how to write products and
inverses in normal form. These relations are

api

j = a
si+1
i+1 · · · asn

n

aai
j = a

ri+1
i+1 · · · arn

n

for all j > i and the word a
ri+1
i+1 · · · arn

n depends on both i and j.. The notation
xy means conjugation of x by y, xy = y−1xy. In Magma, trivial relations are
often not listed, e.g., if a and b commute, then the relation ab = a is not shown
with the defining relations. Any solvable group can be written in polycyclic
notation. However, there is not necessarily a unique way to represent the group
in polycyclic notation.

Semi-Direct Products Given branching data obtained from the Riemann-
Hurwitz equation, we wish to check all groups of a certain order to see if any are
orientation preserving rotation groups. As previously mentioned most groups
are solvable and we can assume the existence of a normal subgroup. Using the
normal subgroup we can often use semi-direct products to generate the possible
rotation groups of the desired order.

Given a group G with a normal subgroup N and another subgroup H where
N ∩H = {1} and |N ||H| = |G|, we can construct G = NH = {nh : n ∈ N,h ∈
H}. Note that NH is closed, because N is normal. See [3, p. 176] for more
information.

We can generalize this notion to the semi-direct product. Here, we take two
groups and construct a larger group in a way similar to that of direct products.
Given groups H and K and a homomorphism φ : K 7→ Aut(H), we construct

H oφ K = {(h, k) : h ∈ H, k ∈ K}
where multiplication is defined by

(h1, k1) · (h2, k2) = (h1φ(k1)(h2), k1k2).

This will be a group of order |H||K| with H isomorphic to a normal subgroup
in H oK. Note that if φ is the homomorphism that maps every element of K
to the identity element of Aut(H), then H oφ K = H ×K.

The fact that a group G has a normal subgroup does not imply that G can
be represented as a semi-direct product.
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Example 7 The quaternion group, Q8 has a normal subgroup of order two.
However, since every subgroup of order four contains the normal subgroup, Q8

cannot be written as a semi-direct product. We say that Q8 does not split.

The question then arises how to tell if a group splits with a given normal
subgroup N , i.e. whether or not it can be written as a semi-direct product. If
we can show that there exists a subgroup H of the group G, where H∩N = {1}
and |H||N | = |G|, then we know that our group splits and G ∼= N oH. Such
a subgroup H is called a complement of N . However, in trying to find tiling
groups, this is not a very helpful method, as we do not have an easy way to
see if H exists. In order to prove that a potential rotation group splits, we can
sometimes use the following theorem from group cohomology theory.

Theorem 8 Given a group G and a normal subgroup N , consider the standard
homomorphism ψ : G 7→ G/N . If for every prime p that divides the order
of G/N there is a p-group P , such that ψ|P maps bijectively onto a Sylow p-
subgroup of G/N , then there exists a φ such that G ∼= N oφ (G/N).

The use of this theorem is described in [2]. The following example illustrates
a basic application of this theorem.

Example 9 Let |G| = 160 and (l, m, n) = (2, 4, 5). Consider the case where
G has a normal subgroup, |N | = 16, so that |G/N | = 10. We want to know if
G can be written as a semi-direct product of N and G/N . The prime divisors
of |G/N | are 2 and 5, so we have two cases. First, we look at the case where
p = 5. Since |N | and 5 are relatively prime, we know that no order 5 element
of G can be in the kernel of ψ. Thus, ψ maps every Sylow 5-subgroup of G
onto a Sylow 5-subgroup of G/N . Next, we consider p = 2. Recall that (a, b, c)
is a generating triple of G with al = bm = cn = id. Let ψ(a) = ā, ψ(b) = b̄,
ψ(c) = c̄. Since a and b generate G, ā and b̄ generate G/N . If |ā| = 1, then ā
and b̄ cannot generate G/N . Therefore, a 6∈ N . Since a is an element of some
Sylow 2-subgroup of G and a 6∈ N , it follows that this Sylow 2-subgroup must
map to 〈ā〉. It then follows from the above theorem that G ∼= N oG/N . In fact,
it turns out that for a particular φ, G = (Z2×Z2×Z2×Z2)oφ D5 is a rotation
group for a surface of genus 5.

If a group does not satisfy the conditions of the above theorem for a given
N , then we have no guarantee that the semi-direct products we can create will
be all of the possible rotation groups of order G. In that case, we need to use
other methods to analyze the non-splitting groups.

6 Sample methods for classifying rotation groups

Our first method for classifying large rotation groups comes from Ryan Vinroot’s
technical report [7]. If we know that all groups of a given order contain a normal
Sylow subgroup, we can often eliminate this branching data as illustrated in the
following example.
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Example 10 Let |G| = 200 = 2352, (l, m, n) = (2, 4, 5), and σ = 6. Then, by
Sylow’s theorems, G has a normal Sylow 5-subgroup, P5, of order 25. Further-
more, since c has order 5, it follows that c ∈ P5. If we let H = 〈a〉, then P5H is
a subgroup of G such that 〈a, c〉 ⊆ P5H. Since |P5H| = 25 ·2 = 50 < 200, we see
that a and c cannot generate all of G. Thus, we have arrived at a contradiction,
and we can eliminate this branching data.

To illustrate several more techniques for classifying rotation groups, consider
the case where G is not simple. Then, G must have at least one normal subgroup
N . Also, |N |

∣∣∣ |G| so we must break our classification of rotation groups of a
specific order into different cases based on the possible values of |N |.
Example 11 Let |G| = 150, (l, m, n) = (2, 3, 10), and σ = 6. Then, |N | ∈
{2, 3, 5, 6, 10, 15, 25, 30, 50, 75}.

Next, we can look at the standard homomorphism ψ : G 7→ G/N . Let
ψ(a) = ā, ψ(b) = b̄, and ψ(c) = c̄. Since any two of (a, b, c) generate G, it
follows that any two of (ā, b̄, c̄) generate G/N . Similarly, since abc = 1, āb̄c̄ = 1.
Also, it follows from properties of homomorphisms that the orders of ā,b̄, and
c̄ must divide l, m, and n respectively. These conditions force G/N to be a
orientation preserving rotation group of a surface of lower genus. Thus, we need
only see if such a rotation group exists by either looking at classification tables
for lower genera or, if the order of G/N is less than 128, by using the programs
described in section 4.

Example 12 Continuing our example from above, suppose |N | = 15. Then,
|G/N | = 10. Recall that |b| = 3. Thus, |b̄|

∣∣ 3 and |b̄|
∣∣ 10. This implies that

|b̄| = 1. Since |ā| = 1 or 2, we have that the group generated by ā and b̄ has
order less than or equal to 2. However, a and b generate all of G, so ā and b̄
must generate all of G/N . Thus, we arrive at a contradiction, and we know
that |N | 6= 15. Using similar reasoning, we can reduce the possible orders of N .
Thus, |N | ∈ {2, 3, 5, 25, 75}.
Example 13 Again, continuing our above example, suppose |N | = 5. Then,
|G/N | = 30. Also, the possible orders for ā, b̄, and c̄ are (2, 3, 5) and (2, 3, 10)
respectively. Using previously described methods, we can show that there is no
rotation group of order 30 with (l,m, n) = (2, 3, 5) or (2, 3, 10). Thus, we know
|N | 6= 5.

Suppose that the normal subgroup is a Sylow p-subgroup, P , and that one
of our generating elements has order p. Then, we know that this generating
element, which we will arbitrarily call a, is in the Sylow p-subgroup. Then,
we can use the method in Example 10 to arrive at a contradiction, assuming
|P ||〈b〉| < |G|, where |b| ≤ |c|.
Example 14 If |N | = 2 or 3, then N is a normal Sylow p-subgroup. Since
|a| = 2 and |b| = 3, this Sylow p-subgroup must contain a generating element.
Following the argument described above, we see that |N | 6= 2, and |N | 6= 3.
Thus, |N | ∈ {25, 75}.
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If a normal subgroup in G can be shown to have a characteristic subgroup,
then that characteristic subgroup is normal in G. This fact allows us to reduce
some cases to other ones.

Example 15 If |N | = 75, then Sylow’s theorems tell us that N contains a
characteristic subgroup of order 25. Thus, G contains a normal subgroup of
order 25, and we need only consider the case where |N | = 25.

Once we reduce the possible orders of |N | through the methods described
above, we must then attempt to create the group G with the information we
have gained. If we are lucky, we can use the theorem described in section 5 to
see that G splits, and then create all possible groups G using the semi-direct
product.

Example 16 If |N | = 25, then we can show that G splits, because 2 and 3
are relatively prime to 25. We find that |ā| = 2, |b̄| = 3, and |c̄| = 2, which
forces G/N to be isomorphic to S3. Since there are only two groups of order 25,
we are left with two possible types of semi-direct products: (Z5 × Z5) o S3 and
Z25 o S3. With the aid of a computer program, we were able to construct all
such groups. After constructing these groups, we could use a different program
to check if these groups were orientation preserving rotation groups. One of the
semi-direct products for (Z5 × Z5) o S3 is indeed a rotation group, and there
does exist an automorphism θ which implies the existence of a tiling group G∗.

In the example above, it was helpful that there were only two possible groups
of order 25. Sometimes, we are not as fortunate. However, the following argu-
ment allows us to restrict ourselves to the cases where N is Abelian, provided
that G is solvable. First, we must present the following definition. [5]

Definition 17 Let G be a group. The subgroup of G generated by the set
{aba−1b−1} is called the commutator subgroup of G and is denoted G′.

Let G(1) be G′, and let G(n) be the commutator subgroup of G(n−1). It is a
fact that G(n) is characteristic in G(n−1) [4]. From this fact, we see that G(n)

is normal in G for all n. Furthermore, if a group is solvable, then there exists
an n such that G(n) = {1}. It is trivial to show that if G(n) = {1}, then G(n−1)

must be a normal Abelian subgroup.
Given a solvable normal subgroup N in G, we can find an n such that N (n)

is Abelian and normal in G. Thus, when using the methods described above to
classify orientation preserving rotation groups, we can limit our search to normal
subgroups that are Abelian. Furthermore, if the normal Abelian group is not of
order pm for some prime p and integer m, then it must contain a characteristic
Sylow subgroup. This subgroup will be normal in G. Thus, we need only look
at the cases where N is an Abelian group of order pm. This greatly reduces the
number of groups we need to search through.
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What if G Does Not Split? If G does not split, we can use information
about the normal subgroup and the quotient group to construct a polycyclic
representation of G. Starting with the normal subgroup, we can add generators
to the beginning of the list of polycyclic generators in such a way that the
relationships described by the quotient group are preserved.

Example 18 Consider |G| = 192 and N = Z2. In this case N lies in the center
of G. The only possible quotient group that satisfies all the necessary conditions
is

G/N = 〈x, y, z, w, v, u : x2, y3, z2 = v, w2 = u, v2, u2, yx = y2,

zx = zwv, zy = wv, wy = zw, vx = vu, vy = u, uy = vu〉.

We would like to be able to add a generator t of order two to the end of the
generator list. This t represents N , and thus, we would have to allow for the
possibility that each relation may or may not be multiplied by t on the right hand
side. This is true because when we mod out by Z2, all the t’s would disappear,
leaving the quotient group as shown above. Although this method would work,
we would be forced to check 221 possible groups, which would take far too long.

Luckily, there is another way for us to proceed. Instead of starting with the
quotient group, we can start with the normal subgroup Z2 and add the genera-
tors one by one. The fact that t is normal in G tells us that ta = t for all a in
the generator list. As we add generators, we only consider the possibilities that
preserve the relations of the quotient group. As in the previous method, every
relationship can also have a t multiplied on the right. After adding each genera-
tor, we can eliminate all representations that do not describe consistent groups.
We can check consistency with a computer by attempting to construct the left
regular representation of the generators of the group, and checking to see if they
generate a group of order 192. The fact that we can eliminate groups at each
step reduces the time required significantly. Once we have built our way up to
groups of order 192, we can check for orientation preserving rotation groups. It
is important to note that there can be many different polycyclic notations for the
same group. Using this method, we found 32 different polycyclic representations
for the single orientation preserving rotation group of order 192 on a surface of
genus 5.

7 The classification

Using the methods described above, we classified most tilings on surfaces of
genus six and seven, as well as a few additional tilings on surfaces of genus
three, and five. There are a few group orders left unclassified for genus six and
seven. These are listed as unclassified data in Tables 1.b, and 2.b. For instance,
we do not know if there are any tiling groups for groups of order 180, 240, or
288. In this section, we will sketch how the classification of tiling groups of all
other orders for surfaces of genus through seven is complete.
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Consider |G| = 120. From our list of all solvable groups of order under 128,
we can classify all solvable rotation groups of order 120. The only non-solvable
groups of order 120 are S5, A5 × Z2, and SL2(5). Thus, we can classify all
rotation groups of order 120 using Magma.

Consider |G| = 144 with (l, m, n) = (2, 3, 12), (2, 4, 6), (2, 3, 8), or (2, 3, 9).
Then, |N | ∈ {2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72}. Using the method illus-
trated in Examples 12 and 13 we can eliminate the possibilities of |N | equaling
4, 9, 16, 18, and 36. For |N | = 8, the quotient group must be Z3 × D3 for
(l,m, n) = (2, 3, 12). We constructed the semi-direct products and found that
none of them produced tiling groups. Since this case splits, we have eliminated
this possibility. Similarly, for |N | = 3 and (l,m, n) = (2, 3, 12), we must con-
struct semi-direct products. This time, we find that one of the semi-direct prod-
ucts produces a tiling group. Again, because this case splits, we have completed
this possibility. The remaining cases, excluding |N | = 2, reduce to previous
cases because each must contain a characteristic subgroup of a previously dis-
cussed order. If |N | = 2, we are no longer guaranteed that G splits to produce
a semi-direct product. Thus, we must use the method explained in example 18.

Similar arguments show that the cases |G| = 160, 192 and 216, as shown in
the table are complete. The details of this will occur in a subsequent paper.
We have now classified all triangular tiling groups on surfaces through genus 7,
excluding groups of orders 180, 240, and 288.

8 Further directions

During this REU, we finished the classification of triangular tiling groups on
surfaces of genus four and five that was started by Ryan Vinroot. We also
classified most rotation groups on surfaces of genus six and seven. These results
are listed in the tables in the next section. One obvious further direction is to
complete the classification of all tiling groups on surfaces of genus four through
ten. In addition, we have the following questions:

• What are necessary and sufficient conditions for the existence of θ given
an orientation preserving rotation group?

• Are there cases where a rotation group admits a tiling group for some
generating triples but not for others? So far, we have not found any
examples of this phenomenon.

• Is there a more efficient way to deal with the cases that cannot be repre-
sented as semi-direct products?

• Are there more effective ways to use polycyclic notation to search for tiling
groups?
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9 Tables of rotation and tiling groups

In the tables the group order, branching data, and group presentation given
unless the group has a particularly simple form. For each entry a generating
triple was found and tested to see if an automorphism θ existed. Branching
data which was not completely analyzed are put into tables of unclassified data.
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Table 1.a Known genus 6 rotation and tiling groups
|G| (l, m, n) G tiling group?
13 (13, 13, 13) Z13 Yes
14 (7, 14, 14) Z14 Yes
15 (5, 15, 15) Z15 Yes
16 (4, 16, 16) Z16 Yes
18 (3, 18, 18) Z18 Yes
20 (4, 5, 20) Z20 Yes
21 (3, 7, 21) Z21 Yes
24 (4, 4, 12) 〈x, y, z, w : z2 = w3 = 1, x2 = y2 = z, Yes

yx = yz, wx = w2〉
24 (4, 6, 6) Z3 ⊕D4 Yes
24 (4, 6, 6) 〈x, y, z, w : x3 = w4 = 1, y2 = z2 = w, Yes

yx = z, zx = yzw, zy = zw〉
24 (2, 24, 24) Z24 Yes
24 (3, 8, 8) 〈x, y, z, w : z2 = w3 = 1, x2 = y,

y2 = z, wx = w2〉
26 (2, 13, 26) Z26 Yes
28 (2, 14, 14) Z14 × Z2 Yes
28 (4, 4, 7) 〈x, y, z : x2 = y2 = z7 = 1, zx = z6〉 Yes
30 (2, 10, 15) Z5 ×D3 Yes
36 (2, 9, 9) 〈x, y, z, w : y3 = z2 = w2 = 1, x3 = y, Yes

zx = zw, wx = y〉
39 (3, 3, 13) 〈x, y : x3 = y13 = 1, yx = y3〉 NO
48 (2, 4, 24) 〈x, y, z, w, v : x2 = w2 = v3 = 1, y2 = z, z2 = w, Yes

yx = yz, zx = zw, vx = v2〉
48 (2, 6, 8) 〈x, y, z, w, v : x2 = w2 = v3 = 1, y2 = zw, Yes

z3 = w, yx = yz, zx = zw, vy = v2〉
50 (2, 5, 10) 〈x, y, z : x2 = y5 = z5 = 1, zx = z4〉 Yes
56 (2, 4, 14) 〈x, y, z, w : x2 = y2 = z2 = w7 = 1, yx = yz〉 Yes

wx = w6〉
72 (2, 4, 9) 〈x, y, z, w, v : x2 = z3 = w2 = v2 = 1, y3 = z, Yes

yx = y2z2, zx = z2, wy = wv, vx = wv, v2 = w〉
75 (3, 3, 5) 〈x, y, z : x3 = y5 = z5 = 1, yx = y4z4, Yes

zx = y〉
120 (2, 4, 6) S5 Yes
150 (2, 3, 10) 〈x, y, z, w : x2 = y3 = z5 = w5 = 1, yx = y2, Yes

zx = z4, zy = w4, wx = z4w, wy = zw4〉
504 (2, 3, 7) PSL2(8) Yes
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Table 1.b Unclassified branching data for genus 6
|G| (l,m, n) G tiling group?
120 (2, 3, 12) unknown
120 (2, 4, 6) unknown
120 (3, 3, 4) unknown
180 (2, 3, 9) unknown
240 (2, 3, 8) unknown

Table 2.a: Known genus 7 rotation and tiling groups
|G| (l,m, n) G tiling group?
15 (15, 15, 15) Z15 Yes
16 (8, 16, 16) Z16 Yes
18 (6, 9, 18) Z18 Yes
20 (4, 10, 20) Z20 Yes
21 (3, 21, 21) Z21 Yes
24 (3, 8, 24) Z24 Yes
24 (4, 6, 12) Z12 × Z2 Yes
24 (6, 6, 6) 〈x, y, z, w : x3 = w2 = 1, y2 = z2 = w, Yes

yx = z, zx = yzw, zy = zw〉
27 (3, 9, 9) Z9 × Z3 Yes
27 (3, 9, 9) 〈x, y, z : x3 = z, yx = yz〉 NO
28 (2, 28, 28) Z28 Yes
28 (4, 4, 14) D14 Yes
30 (2, 15, 30) Z30 Yes
32 (2, 16, 16) Z16 ⊕ Z2 Yes
32 (2, 16, 16) 〈x, y, z, w, v : x2 = z, z2 = w, w2 = v, yx = yv〉 Yes
32 (4, 4, 8) 〈x, y, z, w, v : x2 = w, y2 = z2 = v, yx = yz, Yes

zx = zy = zv〉
32 (4, 4, 8) 〈x, y, z, w, v : x2 = w, z2 = w2 = v, yx = yz, Yes

zx = zy = zv〉 Yes
32 (4, 4, 8) 〈x, y, z, w, v : x2 = w, y2 = z, z2 = v, yx = yz, Yes

zx = zv〉
32 (4, 4, 8) 〈x, y, z, w, v : x2 = w, y2 = zv, z2 = v, yx = yz, Yes

zx = zv〉 Yes
36 (3, 4, 12) 〈x, y, z, w : y3 = z2 = w3 = 1, x2 = z, wx = w2〉 Yes
42 (2, 6, 21) 〈x, y, z : x2 = y3 = z7 = 1, zx = z6〉 Yes
48 (2, 6, 12) 〈x, y, z, w, v : y2 = v2 = 1, x2 = z2 = w2 = v, Yes

zy = zw, wy = z, wz = wv〉
48 (3, 4, 6) 〈x, y, z, w, v : x2 = y3 = v2 = 1, z2 = w2 = v, Yes

zy = zw, wy = z, wz = wv〉
54 (2, 6, 9) 〈x, y, z, w : x2 = y3 = w3 = 1, z3 = w, Yes

zx = z2w2, wx = w2〉
54 (2, 6, 9) 〈x, y, z, w : x2 = y3 = w3 = 1, z3 = w, NO

zx = z2w2, zy = zw2, wx = w2〉

18



Table 2.a continued
56 (2, 4, 28) 〈x, y, z, w : y2 = z2 = w7 = 1, x2 = z, wy = w6〉 Yes
56 (2, 7, 7) 〈x, y, z, w : x7 = y2 = z2 = w2 = 1, yx = z, NO

zx = yzw, wx = zw〉
64 (2, 4, 16) 〈x, y, z, w, v, u : x2 = w, z2 = vu, v2 = u, yx = yz, Yes

zx = zy = zv, vx = vy = vu〉
64 (2, 4, 16) 〈x, y, z, w, v, u : x2 = w, z2 = v, v2 = u, yx = yz Yes

zx = zv, zy = zvu, wy = wu, vx = vy = vu〉
72 (3, 3, 6) 〈x, y, z, w, v : x3 = y3 = v2 = 1, z2 = w2 = v, Yes

zx = zw, wx = z, wz = wv〉
144 (2, 3, 12) 〈x, y, z, w, v, u : y3 = v2 = 1, x2 = z2 = w2 = v, Yes

zy = zw, wy = z, wz = wv, ux = u2

Table 2.b Unclassified branching data for genus 7
|G| (l,m, n) G tiling group?
108 (2, 3, 18) unknown
112 (2, 4, 7) unknown
120 (2, 3, 15) unknown
120 (2, 5, 5) unknown
126 (2, 3, 14) unknown
144 (2, 3, 12) unknown
144 (2, 4, 6) unknown
180 (2, 3, 10) unknown
216 (2, 3, 9) unknown
240 (2, 4, 5) unknown
288 (2, 3, 8) unknown

Table 3: Previously unclassified genus 3 tiling groups
|G| (l,m, n) G tiling group?
48 (2, 3, 12) 〈x, y, z, w, v|y3 = v2 = 1, x2 = z2 = w2 = v, Yes

zy = zw, wy = z, wz = wv〉

Table 4: Previously unclassified genus 5 tiling groups
|G| (l, m, n) G tiling group?
64 (2, 4, 8) 〈x, y, z, w, v, u : x2 = w, z2 = u, yx = yz, zx = zv Yes

zy = zu, wy = wvu〉
64 (2, 4, 8) 〈x, y, z, w, v, u : x2 = w, yx = yz, zx = zv, wy = wv Yes

wz = wu, vx = vu〉
160 (2, 4, 5) 〈x, y, z, w, v, u : x2 = y5 = z2 = w2 = v2 = u2 = 1, Yes

yx = y4, zx = zu, wx = wu, vx = zwvu, zy = zwv,
wy = zwu, vy = zwvu, uy = wv〉

192 (2, 3, 8) 〈x, y, z, w, v, u, t : x2 = y3 = v2 = u2 = t2 = 1, z2 = u,
w2 = t, yx = y2, zx = zu, zy = wvt, wx = zwu, Yes
wy = zwvt, wz = wv, uy = t, tx = ty = vut〉
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